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Abstract

In this paper a ‘‘forward-advancing’’ field discretization method suitable for solving the Helmholtz equation in large-

scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization

procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes

the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is

thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard

finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus

enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are

presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and

show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and

downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are

also included to demonstrate the flexibility and efficiency of the method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The wave expansion method (WEM) [1–5] is a very flexible, efficient full field method for solving the
Helmholtz equation, which can model complicated ground topography, ground impedance inhomogeneities
and inhomogeneous moving media. Although, WEM interpolation gives accurate results with a mesh spacing
of less than three points per wavelength, when dealing with extensive domains, the computational resources
will eventually become prohibitive.

A possible answer to sound scattering in large-scale acoustical problems is to consider only the sound waves
travelling in one direction as this will remove the need for full system matrix inversion. This has been
proposed, for example, using the parabolic equation method (PEM) [6–9]. Using the forward wave expansion
method (FWEM) in a similar way, backscattered waves are ignored which permits a computationally light
forward advancing solution to be formulated whilst retaining the other formulation advantages of WEM.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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2. Implementation

To compute the sound pressure distribution of the domain shown in Fig. 1a with FWEM, a ‘‘local mesh’’ is
formed by using a few ‘‘columns’’ of nodes (see Fig. 1b). Three was the minimum number of columns used for
the calculations presented in this study. If the solution is advancing to the right, a free radiating condition
is imposed on the right-hand side of the local mesh. In addition to the high discretization efficiency, the
WEM method also has a natural and robust radiation condition [5] which makes it suitable for this type
of formulation.

Neumann, impedance or radiation boundary conditions are applied to the upper and lower faces as required
by the model. A Dirichlet condition using precalculated values is imposed on the left of the subdomain (except
in the case of the first local domain). Once the sound pressure is calculated for the subdomain, the solution
may be advanced in space. Fig. 2 shows the restraint scheme applicable to each local mesh.

The implementation of the general wave discretization method utilized within each subdomain now follows
the standard WEM formulations. For each point r0 in the subdomain, the pressure can be approximated by
the superposition of N plane waves of strength gn:

pðr0Þ ¼
XN

n¼1

gne
�jkðdn�r0Þ, (1)

where dn is the unit propagation direction vector of the nth plane wave and k is the wavenumber. In the
original WEM the complete range of directions ½0; 2p� are used. In FWEM, as only forward propagation is
being considered the range is restricted to ½�p=4;p=4�. This selection tolerates a nodal spacing of less than
three per wavelength. As the calculation proceeds to field positions more remote from the source, this angular
spread may be reduced. This permits use of lower nodal spacings in the propagation direction.
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Fig. 1. Domain representation.
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Using matrix notation, Eq. (1) may be written as

pðr0Þ ¼ hðr0Þ � g, (2)

where hðr0Þ is a 1�N row vector of plane waves functions evaluated at r0 and g is a column vector of the wave
strengths, gn.

If the same approximation is applied to the other nodal positions in the cell we can write

p ¼ H � g, (3)

where p is a M � 1 vector of the pressures at each surrounding node rm, 1pmpM, and

Hmn ¼ e�jkðdn�rmÞ.

A computational template may then be formed by combining Eqs. (2) and (3) to give

pðr0Þ ¼ hðr0ÞH
þp, (4)

where the Hþ is a pseudo-inverse of matrix H.
Eq. (4) is referred to as the wave expansion discretization (WED) method and is similar to the fundamental

formulation commonly referred to as GFD which uses Greens functions rather than plane waves as basis
functions [1,2]. The template from Eq. (4) may be then used to form individual rows of the system’s dynamic
stiffness matrix.

2.1. Dirichlet boundary condition

For points lying adjacent to a boundary with Dirichlet boundary condition, this boundary condition is
directly implemented constraining the appropriate degrees of freedom in the assembled stiffness matrix.

2.2. Neumann boundary condition

If the subject point, r0, is part of a boundary with outward normal n0 and Neumann boundary conditions
given by

qpðr0Þ

qn0
¼ q0, (5)

the constraint Eq. (3) may be directly augmented to

p

q0

( )
¼

H

qhðr0Þ=qn0

" #
� g ¼ Haug � g. (6)

Applying the pseudo-inversion to Haug, substituting and left–right partitioning the resulting equation, the
reformulation expression of Eq. (2) then yields

pðr0Þ ¼ hðr0ÞðH
þ
augÞLpþ hðr0ÞðH

þ
augÞRq. (7)

2.3. Impedance boundary condition

Impedance boundary condition implementation follows a similar procedure as the one described above. If
the condition for point r0, is given by

qpðr0Þ

qn
¼ �j

r0w
Z

pðr0Þ, (8)

where r0 is any point laying on the boundary with impedance condition, n is the radiating normal outward
boundary, w is the angular frequency, Z is the specific acoustic impedance of the surface at that point, and r0
is the air density.
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Eq. (3) is then augmented to

p

0

� �
¼

H

qhðr0Þ=qn0 þ jðr0w=ZÞhðr0Þ

" #
� g ¼ Haug � g. (9)

After pseudo-inversion and partitioning, the template reduces to

pðr0Þ ¼ hðr0ÞðH
þ
augÞLp.

2.4. Natural radiation boundary condition

A simple method to implement a natural radiation boundary condition [5] is to restrict the propagation
directions of the fundamental basis solutions to a selection of those propagating outwards from the
computational domain, as shown in Fig. 3.

A special radiating template equation may then be constructed,

p ¼ Hrad � g

and the template for the radiation point given by

pðr0Þ ¼ hðr0ÞH
þ

radp. (10)

Once the subdomain is assembled and the ‘‘new’’ boundary conditions (true and ‘‘artificial’’) are applied, the
local equation system can be solved for acoustic pressure at these nodes. A neighbouring subdomain can then
be formulated and the solution advanced.

3. Specific modelling issues

3.1. Source modelling and near field computation

As in the PEM, the FWEM will present some problems in modelling the sound sources and computing the
pressure values in regions near sources or in locations where the curvature of the sound field is high. Results
show that the pressure values obtained in the acoustic field remote from these will not be influenced
significantly by these local inaccuracies.

3.2. Upper attenuating boundary layer

To reduce spurious reflections from the upper boundary back into the computational domain, additional
treatment of the radiation boundary condition may be applied by introducing an artificial absorbing boundary
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layer. In this layer, an artificial attenuation is gradually increased with height, starting with zero attenuation at
z ¼ zt (where zt is the height of the bottom of the absorbing layer). This attenuation is achieved by adding an
imaginary term to the wavenumber kðzÞ according to [8],

k ¼ k0 � jA½ðz� ztÞ=ðzM � ztÞ�
2, (11)

where k0 is the wavenumber in the operational part of the domain, A is a constant, and zM is the z coordinate
of the top boundary.

The introduced damping should not be too large as this will produce reflections back into the lower part of
the atmosphere although it is not clear how to optimize this in the present context.

4. Numerical results

The advancing method was tested for two different benchmark problems, a free radiation problem and a
simple edge diffraction problem. In both cases the ground was considered to be perfectly reflecting
ðqP=qn ¼ 0Þ. Results were compared with theoretical solutions, Hankel functions (for free radiation problems)
and a Fresnel Integration [13] approximation for the diffraction problems. The diffraction problem was also
compared with approximate results obtained with the ISO9613-2 [12] formulation. Two examples of
diffraction of sound over a barrier in a refracting atmosphere are also included to demonstrate the flexibility of
the method.

4.1. Free field propagation

The geometry of the first problem is shown in Fig. 4.
The source was positioned at point ðx; yÞ ¼ ð0; 0Þ. The operating frequency was 1000Hz. The domain was

1 km long, 50m height, and 5,012,505 nodes were used in the model which gave a nodal spacing of three nodes
per wavelength. An absorbing layer 50� l deep was applied. This set-up leaves an operational altitude of
30m. The absorbing layer was formulated using the model in expression (11) with constant A ¼ 0:9. The effect
of the absorbing layer can be seen in Fig. 5.

The resulting field in the operational part of the domain is shown in Fig. 6.
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Fig. 4. Geometry of the problem.
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Fig. 5. FWEM, sound pressure level (dB).
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Fig. 7 shows the true vertical–horizontal scale. This shows that the problem has extremely shallow grazing
angles on the upper boundary of the domain. This may be compared to the free field radiation computed using
the following Hankel function:

Ptheoretical ¼ �
j

4
H
ð2Þ
0 ðkrÞ.

A plot of the real part of the sound pressure values obtained with the FWEM and the analytic solution for the
last 20m of the domain at an elevation 2m above ground level is given in Fig. 8.

A plot of the sound pressure level (SPL) of the sound pressure values obtained with the FWEM and the
analytic solution at an elevation 2m above ground level is given in Fig. 9.

4.2. Diffraction by a sound barrier

The second geometry studied is shown in Fig. 10.
The source was positioned at point ðx; yÞ ¼ ð0; 0Þ. The operating frequency was 1000Hz. The domain was

1 km long and 5,012,425 nodes were used which gave a nodal density of three per wavelength. The top 20m
were changed into an absorbing layer whilst a loss free domain of height 30m was maintained. The absorbing
layer was formulated using the model in Eq. (11) with constant A ¼ 0:9. Fig. 11 shows the results for the first
100m of the domain.
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The resulting sound field for the complete domain is shown in Fig. 12.
The insertion loss was computed in a line at ground level and compared with results obtained with the

ISO9613-2 [12] and a Fresnel integral method [13,14]. The results are shown in Fig. 13.
This figures show the accuracy of the method.

4.3. Diffraction by a sound barrier in a refracting atmosphere

For the following examples which demonstrate the flexibility and efficiency of the method, the same
geometry of Section 4.2 is used. A logarithmic sound speed profile was introduced to model the refraction
[9–11]:

cðzÞ ¼
c0 þ b � ln

z

z0

� �
for zXz0;

c0 for zpz0;

8><
>:
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Fig. 13. Insertion loss (dB). — FWEM, — ISO9613-2, - - Fresnel method.
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Fig. 12. FWEM, sound pressure level (dB). Operational part.
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where z0 is 0.1m for this example, and b is a parameter that can be positive or negative. For downwind
refraction b is positive and for upwind directions b is negative. This was directly implemented by allowing the
wavenumber k to vary accordingly through the field. In addition, the angular spread of propagation directions
to right of the position marked 200m was reduced to ½�p=12; p=12�. This allows the nodal spacing to be
increased to 0.2 nodes per wavelength in the propagation direction.

Fig. 14 shows the resulting sound field for a non-refracting atmosphere. Figs. 15 and 16 show the resulting
sound fields for a downwind and an upwind refracting atmosphere, respectively.

It should be noted that the previous examples are included only to demonstrate the flexibility of the method.
The logarithmical sound speed profile used in these examples do not take into account additional wind speed
gradients induced by the screen. These screen induced wind-speed gradients enhance the downward refraction
of sound waves [16]. More realistic sound speed profiles can be introduced into the model in a similar way.
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5. Discussion

It can be seen from the results that the FWEM offers the basis of a highly accurate discretization method to
solve the Helmholtz equation for extensive domains with low mesh densities.

As expected, due to loss of reflections from obstacles and difficulties modelling wave fronts with high
curvature, the FWEM gives unreliable results in the near field. This problem can be circumvented to some
extent by using the regular WEM for the near field calculations and including a large number of columns in
the calculation of the starter field. The radiation condition used on the advancing front is adequate once the
wave front angles are not too oblique. The treatment of upper radiation condition is critical but this is a
problem with any acoustic calculation in a field with shallow grazing angles and is not specific to this method.
It should be noted that even a combination of an absorbing layer and a radiation condition cannot completely

eliminate spurious reflections.
Examples of sound propagation over a sound barrier in a refractive atmosphere where the wavenumber is

allowed to vary within the field demonstrate the intrinsic flexibility of the method.
Although only regular meshes have been used in the calculations presented in this paper, FWEM may also

be formulated using irregular meshes thus enabling modelling around objects of arbitrary shape. An example
of sound propagation over a wedge shaped object is shown in Ref. [15]. An issue which will now arise is the
identification of the advancing front.

If regular meshes are used and there are no wavenumber parameter changes across a computational front
then the advancing method may be made completely explicit.

When the wavefronts become more planar in nature the formulation may be adjusted by restricting the
range of propagation directions of the basis functions. This will allow further reduction of the mesh density in
the propagation direction. In this paper examples are included with a nodal spacing of 0.2.
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